Estimation of penalty parameters for symmetric interior penalty Galerkin methods

نویسندگان

  • Yekaterina Epshteyn
  • Béatrice Rivière
چکیده

This paper presents computable lower bounds of the penalty parameters for stable and convergent symmetric interior penalty Galerkin methods. In particular, we derive the explicit dependence of the coercivity constants with respect to the polynomial degree and the angles of the mesh elements. Numerical examples in all dimensions and for different polynomial degrees are presented. We show the numerical effects of loss of coercivity. © 2006 Elsevier B.V. All rights reserved. MSC: 65N30; 65N12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified a Posteriori Error Analysis for Discontinuous Galerkin Approximations of Reactive Transport Equations

Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-Babuška-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution...

متن کامل

Symmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...

متن کامل

A Nonoverlapping Domain Decomposition Preconditioner for a Symmetric Interior Penalty Method

In this talk we will discuss a nonoverlapping domain decomposition pre-conditioner for the symmetric interior penalty Galerkin method [1, 2, 3]. Thepreconditioner is based on balancing domain decomposition by constraints [4].Theoretical results on the condition number estimate of the preconditioned sys-tem will be presented along with numerical results. References[1] J. ...

متن کامل

Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient

This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mes...

متن کامل

Energy Norm Error Estimates for Averaged Discontinuous Galerkin Methods in 1 Dimension

Abstract. Numerical solution of one-dimensional elliptic problems is investigated using an averaged discontinuous discretization. The corresponding numerical method can be performed using the favorable properties of the discontinuous Galerkin (dG) approach, while for the average an error estimation is obtained in the H-seminorm. We point out that this average can be regarded as a lower order mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006